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- ON PERFORMANCE CHARACTERISTICS OF SLIDER
AND JOURNAL BEARINGS
By Dezso J. Ladanyl

STMARY

A theoretical analysis of the effects of temporal tangential
bearing acceleration on several performance characteristics of
glider and jowrnal bearings is presented. The derivations of the
mathematical expressions for these effects begin with the laws of
classical hydrodynemics and conclude with modified versions of the
usual performance equations in lubrication. Egquations are pre-
sented that establlish fundamental relations and show the effects of
this type of acceleration on pregsure distribution and load ocapa-
city. Some examples employing the results are presented along with
suggestions for other possible applications. Nomographs are
included to facilitate solution of practical problems.

The equations show that the factor which is most. important in
establlishing the effect of acceleration on bearing performance
characteristios is the ratio of acceleration to speed. When this
ratio is high, the. effect of acceleration is large; when it is low,
the effect is small. It was found that acceleration acts to
decrease load capacity of a bearing. In certain cases, the effects
of acceleration are as important as those due to lubricant
viscoglity.

INTRODUCTION

The present conventional hydrodynamic theory of lubrication is
based on a number of fundamental equations originally derived from
the laws of internal friction and motion of flulds. Perhaps the
most important expression on the subject is the baslic differentlial
equation for pressure distribution put forth by Reynolds (refer-

ence 1). Several terms, such as those referring to the compressi- .

bility of the fluld, eddy forces, variable viscositlies, forces
from welght and inertia, and certain velocitles, were disregarded
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because thelr magnitudes were considered to be of a second-order
nature. These omlssions are Justified as long as the excluded
quantities or their effeots on performance characteristics remain
small; however, if any ome of them approaches first-order magni-
tude, 1t should not be disregarded. Such may be the case with the
inertia texrms. One possible reason why the calculated total
effect may be in error can be found in a statement by Lamb (refer-
ence 2) in which he said, "Although the equations of motion of
viscous fluids are well established, the calculations based on
them are often subjJect to serious limitations. The reason is
partly to be sought in the omission, for the sake of mathema-
tical simplicity, of small terms of the second order in the
Eulerian expressions for the accelerations, which terms are often
at least as important as those due to viscosity."

Increased use of high-speed bearings and the frequent accom-
panying rapid rates of change of wvelocity aroused interest in the
offect of the forces arising from the inertia terms on bearing
rerformance. An attempt to consider all these terms simumltane-
ously leads to equations that cannot be solved directly by
ordinary mathematical methods. Of the various inertia terms,
only the one influenced by a change of speed of one of the
bearing surfaces has been analyzed at the NACA Clevelend labor-
atory and is examined herein. For the case of a Jjournal bearing,
centripetal forces are therefore not considered. The term chosen
for this analysis, and the one that is included in the derivation
of a differentlal equation for pressure distribution,expresses
the rate of increase of momentum of an elementary particle of
lubricant in the direction of motion. This derivation and the
resulting modified Reynold’s differential equation are presented.
By use of this final basic equation as a starting point, 1t is
possible to calculate any one of the many performance character-
istics for a slider or a Journal bearing, each result containing
the effect of tangential temporal acceleration. Analyses of
some of the important operating characteristics are presented.

SIMBOLS
The following symbols are used in this analysis:

.

a ratio of inlet to outlet £ilm thiokness of slider bearing,

mhy

B breadth of slider bearing in the general direction of motion
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C, ¢4, C3 + . . constants of integration

c

Hl"“?'l_ih':}:‘b"do

B

-

radial clearance

eccentricity in journal bearing

tangentlal force on slider

thicimess of lubricant £ilm at any point
minimum £ilm thickness

inlet £ilm thickness

outlet £ilm thiokness .

length of bearing perpendicular to motion

shaft speed '

attitude, ratio of eccentricity to radial clearance
‘transverse load on bearing

percentage of load capacity due to acceleration
Dressure

percentage of pressure due to acceleration

maximm pressure

minimm pressure

pressure at é=0_-

- volume rate of flow per unit length

rate of shear
shaft radius
shear stress

time
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U surface speed of moving member
u fluid veloclty in x-directlion
v fluid velocity in y-direction
w f£luid velocity in z-direction

X,Y,Z force componsnts in x-, y-, and z-directions, respectively

X,¥,2 ocoordinate axes

xy x/B

y variable in Sommerfeld substitution, cos™t -l-n-;"-nifi-:;e

2] angle to any point_on shaft, measured from lins of ce;zters
in direotion of zrotation

1} absolute viscosity

[o} mags density

g angle from line of centers to load line, measured in

direction of rotation

\

THECRY
Preliminaery Considerations

In the development of the steady-state hydrodynamic theory of
lubrication, a number of conventional assumptions usually have been
made. Some of these assumptions are inherent in the concepts that
lie behind the hydrodynamic theory and. others are made to simplify
mathematical analysis. All these assumptions made for steady-state
motion of the lubricant (reference 3) are used herein. They include
the assumptions that:

(1) The motion of the fluid is free from eddies (reference 1).

(2) The forces arising from weight and inertia in steady-state
motion are small compared to the stresses arising from viscosity
because the distances between the bearing surfaces in lubrication
are small compared to the ratio of the viscosity to the velocity of

the moving surfaces.
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(3) The fluid is inocompressible (permissible because a rela-
tively Incompresgible liquid such as oil is usually employed in
lubrication). -

(4) The viscosity of the lubricant is wniform throughout the
film.

(5) In the case of Journal bearings, the ourvature of the oil
film may be neglected because the radii of curvature are large
compared to the oll-film thickness and the bearing surfaces may

_therefore be considered as being nea.rly parallel and undistorted.

(6) The fluld pressure is constant with respect to depth in
the £ilm because the £1ilm thickness is too small to have an
appreciable variation of pressure in the y-direction.

(7) The flow is laminar,
(8) The lubricant follows Newton's law of viscous flow.

(9) There is no slip between the surfaces of the bearing and
the lubricant.

Nonsteady state of motion may be superimposed on the steady state
by the application of a temporal tangsntial acceleration to the
moving bearing surface. The use of this specifio type of acceler- _
ation indicates that only the effect of ohanging bearing speed
and not veloclty 1s considered. This superimposition camnot be
made, however, when very small viscositles, or very large Reynolds
numbers, exist (reference 4). Because such conditions do not
occur in bearing applications, they need not be consldered here.

i :

An elementary cube of lubricant located between two bearing
surfaces is shown in figure 1. The origin of the coordinates is
placed on the moving member with the directlions of the three axes
a8 indicated. The velocity of the mover 1s U in the positive
x-direction. The pressure within the film is p and is not a
fimction of y according to assumption (6).

The force on the left face of the element is p dydz acting
in the positive x-direction. The force on the rear face 1s p dxdy
acting in the positive z-direction. In the distances dx and dz,
the pressures increase by amounts of (Op/dx)dx and (Op/dz)dz,
respectively; therefore, the forces acting on the right and front .




faces of the element in the negative x- and z-directions are [p + (ap/Bz)dx]d.ydz and
[p + (apﬁz)ds]d:ny, respectively. -

T bhe shaces PAarssne s reey B TN m}l amm =  smenrvvadieanen’l aabued ma wmadadsd aee dan delaa ___ mamna mma -

clockwise rotation in the n-phne they are oconsidered to be positive. The foros on the
top facs in the negative x-direction is a,dxdr vhere 8, is the snear gtress. Simllarly,

the force on the same face in the negative z-direction is sdﬂa. The shear stresses

increase in the distance dy by (9x/dy)dy. Partial aoriva.'bivea are ussd because the
shear gtresmses vary in the x- end z-directions as well as in the y-direction. The forces an

thie bobban Lace ave therefore [a, + (asx/ay)dy]d.mz and |m, + (bszﬁy)dy]m acting

in the positive x- and z~directions, respectlvely. Ne shear forcos are considered om the
vertical faces because of the previous assmmption of negligible vertical velooitiles.

*

The difference between the nocrwal- and tangential-force increments in any given direo~
tion is equal to the rate of inorease of the momentwum of the element in that directicn.
This gtatement may be mathematically indicated by

o

-}
pd;rdz-(p+§d:) dyds - e,4xdz +(s:+"%dy) m:np?ﬂud:ﬂydz

PAxdz ~pdxde =0 + 0= 0 % (1)
. an. ) aa,. - aw '
pdﬂy—(r+§?)dﬂy-a,dﬂs+(a’+1q;ny)mz-pi-%dxdya: g

By simplifioation,

020T
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. §§=° ? (2)
) ow
AL

Newton's law of viscous flow states that the rate of shear is
directly proporticnal to the stress and inversely proportional to
the viscosity of the fluid, or

. R =

Tl

and because the rate of shear is the ratio of the change of velocity
in a small distance dy +to the distance dy, then

du
i

When these values of s are introduced into equa.tion (2) R
following egquations are obtained:

n
) ou Bu
'52""’3"5'"32

R =0 f ()

2okl
2 ayz
-

Basic Differential Equation t o

For further methematical simplification.-of equations (4), it
may be assumed thet the pressure is uniform in the z-direction.
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This assumption is the sams &8s assuming that the bearing is infin-
ltely long in the z-direction or, in other words, that there is no
side leakage. These equations now reduce to

) .
: 2—£+p§—:=u§;§ (5)

With no slipping of the lubricant at the'bounda.ries, the
temporal tangential acceleration of a particle of oill is equal to
zero at the gtationary bearing swmrface and is equal to the acceler-

au
ation g of the moving member at its surface. In other words,
if h 1is the thickness of the film at any x, then

%—:g—g— wvhen y =0
du (6)

EF.=° wvhen y=h

If the acceleration at any point within the film due to the
change of speed of the moving surface is assumed to be linearly
proportionsl to the distance from this suxface, then

du -y\4u

Fol ( h > P (7)
The validity of this assumption over wide ranges of acceleration
can be demonstrated if the solution of an analogous heet-conduction
problem -- temperatures in a bar with special end temperatures
(reference 5) -- in which the variables have been changed to

corrvespond with the ones in equation (6), is differentiated with
respect to time to give the acoeleration distribution.

When equation (7) is substituted in equation (5) and the result
reaxranged,

‘¥ _1 @ - au '
=M3 NCYIE x

In order to £ind the velocity wu, 1t is necessary to integrate
twice with respect to y while holding x constant.
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The boundary conditions are similar to those of equations (6).

u=7U vhen y =0

(9)
u=0 vhen y=h
With these limits,
c.=-2 & _ U _Lb p 4U
1 20 d&x h 3 u 4t
02=U
thus '
=_ -y) - ~y) 92 - ¥2_ (2h-y)(n-y) 40 0
wely) - Loy 8-8 @oen) )
and
2
du_ U,'l dp o 37°\ au
E"i*z_i(zy'h) iz " & (2n - 65 + h)ﬁ (11)

The volume of oil Q' passing through any cross section of
wnit width in the film in the yz-plane in wnit time is given by

h
R I
0

The expression for u in equa.tion (10) can be substituted into this
equation for flow to g:lva

W _ b3 gp gn’ au
@' =T - x ax "~ 2g at (12)
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With the assumption of no side leakage, the principle of continuity
ghows that

Q' _o
dx

therefore, by differentiating equation (12),

3 3
w0 _va_ af e, @ o),
ax -2 ax " ax\izp ax * 24p at
or
s & (B e o ay ' s
dx dx \6uy dx " 12u dt

This equation is similar to Reynolds' differential equation for
pressure distribubtion except that side leakage 18 neglected and the
offects of tangentlial temporal beering acceleration are included.

Integration of equation (13) with respect to x gives

4P . euu (-]‘--33-)-3 au (14)

2 at
which is a more convenient form of equation (l.'.’:j.

With this basic expression for the pressure gradient, it is
possible to make theoretical determinations of the load capacity,
frictional resistance, power loss, film thickness at maximum pres-
sure, oll flow rate, and other operating characteristios of both
slider and Journmal beerings, all containing the effects of acceler-
ation. . .

8lider Bearing

Pressure distribution. - The integration of egquation (14) gives
the pressure at any point within the £ilm of -lubricant; but before
this integration can be dome, h must be expressed in terms of
some function of x.
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A brief -description of the slider bearing is presented to
indicate the correlation between the various parts. A typical
slider bearing is shown in figure 2. An applied force F moves
the top bearing member in the direction indicated with a velocity
U. If the applied force is not comstant, the velocity will vary
and can be indicated by an acceleration or deceleration i+ g‘—g
The lower member is stationary except for a self-adjusting tilting
motion made possible by the pivot. The vertical load supported
by the bearing is P. The origin of the coordinate axes is placed -
on the moving slider. Subscripts 1 and 2 refer to the inlet and
outlet -edges of the bearing, respectively. The length of the shoe
is L and 1ts breadth B. In the case of slider bearings, the
slopes of the films are so small that the projection of the breadth
of the shoe on the x-axis can be considered equal to B. The
following relation is found by using similar triangles:

x
h=h]_“§'(hl'h2) (15)
for convenience, let
x
=3
and
h)
a =~

The arbitrary subscript of x does not refer to the inlet point,
but is used only because of convention.

Equation (15) beccmes

h=h (a -ax; +x) (16)

Equation (14) can now be integrated if h 1is replaced by its
equivalent, shown in equation (16). After the introduction of equa-
tion (16), the resulting expression is

dp _ 6ulB 1 8 |-eB aU
ax hzz (a-axl+xl)2 hz(a-a.xl+xl)3
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Integration with respect to 11 glves

' ax
p = 8B ax) - - ;E —1 _|.em |,
h, (a-ax) +x,) (a-ex, + xl)

§uUB L + % ay X34C,
hzz (1-a)(a-ax) + x3) 2hy(l-a)(a-axy + "1? a% "1

p-
(18)
The boundary conditions are
p=0 vhen x; =0

p=0 vien I, =1
By using these conditions, the constants Cz and 0‘ can be found.

3 a .
php & g4y
cs"a-n-lhz 6uU(a+l) a4t

2
6UB 1 pby au
°4"L[—a—+———é- —]

n? | (1%) 120 (1)

When the values of these constants of integration are substituted in
equation (18), the resulting equation gives the pressure at any
point within the £4im,

potum | _mlan0w)
h2 (a+1)(a-ul % x:l_)a
2

.__Ee_. au ) ~— 2.
Z(a ) ry [(a-axl +xl) + (x, -a%x;. 1)] (20)

~

(19)

g

St

A
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The first texrm on the right-hand side of equation (20) is the same
as the expression usually obtained without considering acceleration.
The second texrm is the contribution to pressure made by the acceler-
ation. An examination of the second term reveals that the portion
within the brackets 1s dimensionless and is dependent only on a

end x, and that the quantity RB%-]?)— g—g— has the dimensions of
a8 - .

pressure. Substitution of positive numerical values into this

acceleration term ylelds a result that is always negative; therefore,

at any speed an accelerating slider always produces less pressure
at a given point than a similar slider operating with no acceler-
ation. ILet P, be the fraction of the pressure due to acceler-

ation, then : .

D = p (with acceleration) *~ p (without acceleration) (21)
a p (without acceleration)

_ phg? av |- (a4-3a2+2a) + (..‘4-29:"-»2:;-1)::1
Pa = 1240 a (12
a-

(22)

For a given slider bearing, the various factors in equation (22)
are usually known or can be determined or satisfactorily estimated.
The values can then be substituted in this equation to find ) I

The quantity within the brackets approaches -3 as a approaches 1.
This limit can be determined by L'Hospital's rule. In other words,
vwhen the two bearing surfaces are parallel,

2
Pa = " 500 &
Load capacity. - One of the most important operating charac-
teristics of a bearing is its load capacity. For a slider bearing,

1t can be computed from the pressure obtained from equation (20).
The total force on the shoe, or, because the slider inclination is

emall, the load supported by the bearing, is P expressed as

B 1
P=1 pdx::I;BJA pdx;
0 0
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p_ 6 ULEZ x; (a-1) (1x;) ~
hz2 ’ o (a+l)(a-ax; + xl)a

1
L. _I8%p av | | a2 — 4 -
¥ 2(a2-1) av (a-ax, + xl) ¥ (xl-a ) !
BuULBZ a-1 1%(a-1) 4y
= n,2(a-1)2 l: 8- i 1}] - e & (23)

The first term on the right-hand side of equation (23) represents

the load capacity of a slider bearing with no acceleration. The
negative contribution to the load capaclty made by a positive acceler-
ation is given by the second term. Necessarily, the second term

bas the dimensions of force. The percentage contribution by the
acceleration term can be found in a manner similar to the one used
for pressures in equation (21). The result is

1 (a-1)3
Py = - T;)() 24(a+1)lo;°a.-4'(3—f)' X 100
)
(24)

The change in load-carrying ca.pac:f.ty is geen %o vary directly as
the acceleration of the slider, the square of the minimum film
thickness, and a dimensionless quantity depending only on a, and
inversely as the kinematic viscosity of the lubricant and the speed
of the slider. Sultable values are easlly obtainable for the solu-
tlon of this equation and the determination of Pa.‘

1020
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Journal Bearing

Pressure distribution. - A full Journal bearing may be depicted
as in T figure 3. The adjective "full® signifies that the oil £ilm
extends over the entire 360° of the bearing. The centers of the
bearing and of the shaft are at 0 and O0', respectively. The
radius of the shaft is r, +the radial clearance between the shaft
end the bearing is ¢, the shaft speed 18 N (in rpm), the shaft

acceleration is g%, the surface speed is U, the surface acceler-

ation is %g, the distance between O and 0' in the operating
bearing is the eccentricity e, the load is P, the f£ilm thick-
ness at any point i h, eand the minimum £ilm thickness is hy,.
The angle measured in the direction of rotation, is the angle
from 00 totheloadline The angle 6, measured in the same
direction and from the same line, is the angle to any point on the
shaft. Because the eccentricity is very small compared to the
radius, 1t can be shown (reference 3) that the following equation
is nearly correct:

h=c¢+6ecos 8 (2s5)

When the attitude n is introduced - (n = —) , & dimensionless form
of equation (25) is obtained.

%=1.+ncose ‘ (26)

In the derivation of the pressure distribution for a full
Journal bearing that includes the effects of acceleration, all the
agsumptions made for the slider-bearing theory apply. The starting
point is the modified Reymolds' equation (14). If dx is taken as
being equal to r d9, +then equation (14) becomes

d 1 C au
= 6ulr - - B == (27)
E% 6*(L4n cos 6)2 03(l+n cos t9)s %

In order to find the resultant fluid pressure, Reynolds (reference 1)
used Fourier series to solve his equation but could not obtain
results for all values of eccentricity because of convergence regquire-
ments of the series. Sommerfeld employed a substitution with which
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he circumvented this difficulty (reference 6). He devised a rela-
tion between the angle O and a fictitious angle 7y, which can be
indicated as in figure 4. The angle 7 bhas a range from 0 to
21 corresponding to a range from O to 2x for 6. When oy iB
substituted for O in eaquation (27) and the resulting equation is
integrated, the following expression is obtained:

1
dp = §E_g}‘_ T (1-n cos 7) dy .
c (i1-n
0o
BTG 1 7 '
- pUEY - 2
3 a—_n—z-)—STZ- (1-n cos 7)° dy

: 0]

4
.6z aaf 2 AR,
2 dt 1-n l-n cos 7 (28)
0

I Py is the presswre at 6 = O, as shown in figure 3, then the
pressure rise is

PoRos @gr) ((1.n?l')3—72_> (m = 7)

2 2
- | suUrc 1 " n“gin y cos 7
03>(( 2)52)(72nsin7+ Z‘zi.+ Lz

l-n
/\/ 2
_pr au -1 1l-n" sin ¥
2 dt tan cos 7y -1 (29)

Inasmuch as the rise in pressure from 6 =0 to @ =2x 1is zero,
the constant of Integration can be evaluated as

2¢ 1-:212 ) Q.-nz)s/gpc3 ay (30)
(2+n°) euU(2+n”)

C =

————— - - [, [ - f e — e e —ee - - e e r—————r—e—— —nn =
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Substitution of this value of C 1in equation (29) and the proper
replacement of ¥y with- 9 yleld an egquation that gives the pres-
sure at any point within the £ilm,

-

6ulr [n sin 6(24n cos ) | (o sin 6(n®-4-3n cos 8)\/1-n® au

D= or &
o? (14n cos 6)2(2+n%) 2(14n cos 6)2 (24n°) av
<1 {cos 6 +n) pr 4AU _por dU
¥ 008 (1"+n"'c"'os—e) z &~z a *Po (31)

The first term on the right-hand side of equation (31) is the
same as the variable pressure developed in an oil film with no
regard for acceleration. The second, third, and fourth temms repre-
sent the contribution to the preassure made by the acceleration.

The last term is the constant pressure that exists at 6 = 0.

The pressure variation in a typical journal bearing for various
.-values of acceleration is graphically shown in figure 5 with the
data upon which the calculations were based.. As in the case of the
slider bearing, the contribution made by the acceleration is a nega-
tive one; that is, the resultant of the fluid pressures in the film
surrounding the shaft becomes smaller as acceleration increases.

. load capacity. - If reference axes in figure 3 are taken so
that the OX axis coincides with 0'0, the OY axis 1s perpen-
dicular to OX, and the shaft center is the origin, then the load
can be expressed in terms of x and y components.

The x component is ox
Poos @ =L P cos 6r a0 (32)
0

where L 1s the axial length of the bearing. When equation (32)
1s integrated by parts,

on 2
- er gg sin 0 40 (33)
0

Pcos¢=I.r[p sin 9]

0
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The first term on the right-hand side of equation (33) drops out and

the second term may be integrated if the expression for %g- from
equation (27) is employed.

2
Pcos f = - Shur g 1 - c —
oz |Bllm 08 8) "~ o 1.n cos 6)° o
2%
- Ir 925- gg[cos 6] - (3¢)
0
By evaluation,
Pcosf=0 (35)

therefore, the x component is zero, § is equal to 90°, and the
load acts along the O0Y axis.

The ¥y component is
2x
Psinﬁ-l.j p 8in 0 rdé (38)
0

Because sin § = 1, this component is the load itself. When equa~
tion (36) is integrated by parts,

2x " z"a
P=-2L|pcos @ +rLJ agcoseae (37)
- 0 0 '

Again, the first term on the right-hand side drops out and the

proper e ssion for %‘B‘ from equation (27) is substituted in
equation (37).

2
P=1xL _g.&m_'."ﬂ_e__ UxC cos @ dUcosO ao
o |° (14n cos 9) c (1+n cos 6)

(38)
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The load. capacity P can bs found if the integrands are converted
+¢o partial fractions and the resulting integrals are evaluated with
the help of Sommerfeld's substitutions. The constant of integration
has already been determined in eguation (30).

P L2anpr?L | 3mrip| au (s9)

2 2 3 2 & -
¢ (24n )\/1-n (24 )

or

P = sznp.rsLN _ uznrsLi g_g . (40)
5e:2(24a:12)‘\ln.-:r;2 1o(2+n2)

“The f£irst term on the right-hand side of equation (39) or (40) is the
usual expression for the load capacity of a jJouwrnal bearing in which
no acceleration effects are considered. The second term is the
amownt by which normal load capacity is decreased dbecause of the
presence of acceleration.

As Iin the case of the slider bearing, the percentage decrease

in load capaclity of a Journal bearing due to acceleration is found
by dividing the amount of the decrease by the normal load capacity.

1 g—g 2 410%
C =
Py = - (_E_) ("11") (__T_.)x 100 (41)
P.
an
B, = - (_a.) (%L) (f_i;ni) X 100 (42)
)

where the speed and acceleration of the bearing can be expressed by
either of the two methods.

An examination of equations (41) and (42) reveals that the per-
centage change due to acceleration varies directly as the accelera-
tion of the bearing, the square of the radial clearance, and a func-
tion of the attitude, and inversely as the kinematic viscosity of the
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lubricant and the speed of the bearing. It should be noted that
the size of the bearing does not appear in the equation. OFf the
various factors involved, the acceleration-speed ratio is the most
significant; this significance is subsequently emphasized. The
relation between the radial clearance and the attitude in the third
factor of equations (41) and (42) is graphically illustrated in
figures 6 and 7. It can be seen from an inspection of the factor
containing the kinematic viscosity u/p +that the greater the dens-
ity of the o0il or the lower ite absolute viscosity, the greater will
be the total effect on P,.

In order to facilitate the solution of equation (42) wvhen
actudl numerical velues are used, nomographs have been prepared.
Because speed usually varies over wide ranges, two charts, practi-
cally the same except for the working limits of N, are pre-~
sented in figure 8. Conversions of some of the units have been
made for fwrther simplification. Sample solutions, shown on the
nomographs, indicate the metbod to be used in determining 1> A
value of P, can be obtained quickly if the following are
known: specific gravity of the lubricant, viscosity in centipoises,
bearing acceleration in revolutions per minute per second, bearing
speed in revolutions per minute, radial clearance in inches, and
attitude.

APPLICATIONS

The equations derived can be used to determine the effect of
acceleration on the load capacity of high-speed Journal bearings
such as those of a current turbojet englne. During an investigation
in the HACA Cleveland altitude wind tunnel, ‘such an engine was
accelerated as rapidly as limitations on vibration and afterburning
vermitted. Bngine speed was increased from 5000 to 17,000 rpm in
16.8 seconds in the manner indicated in figure 9. It can be seen
from the figure that the acceleration was not constant, the maximum
acceleration of 1176 rpm per second occurring at 17,000 rpm. The

effect of this acceleration on the load capacity of a journal bearing

within the unit cen be determined readily from egquation (42). The
following conditions were known for the test: A commercial oil was
used; the oil temperature leeving the bearing was 200° F; and the
total clearance in the 2-inch journal bearing was 0.005 inch. The
attitude of the bearing was assumed to be 0.5. The difference
between the load capacities calculated for the prevailing condi-
tions and for steady-state operation at 17,000 rpm was found to be
negligible. When the ranges of the various variables involved in
equation (42) are examined, it is found that the acceleration-speed

1020



0201

NACA TN No. 1730 21

ratio is the most important factor. In the example just cited, this
ratio is about 0.07. It is emall because the denominator, that is,
the beering velocity, is so large. In the case of journal bearings
in jet engines now being used, this ratio has been calculated and
found to be very small in all cases. It therefore appears that
failure of such bearings is not induced by changes in beari.ng char-
acteristics caused by bearing acceleration.

Many exsmples exist, however, in which this accelerat:lon-speed
ratio is high and the effeots of acceleration are considerable.
Reciprocating~-engine piston rings, for example, can be considered
sllder bearings. For certain values of the crank angle, the
acceleration-speed ratio becomes so large that the decrease in load
capacity due to the temporal tangential acceleration is almost of
the same megnitude as the steady-state load capacity. In such
instances, the lubricating film may break down and permit metal-to-
metal contact. Generally, large values of the acceleration-gpeed
ratio and resultant large values of Py are found in cases in
which the bearing motion is alterna.ting, that is, where the speed
varies not only in magnitude but in direction. Near the reversal
points, the speed approaches zero, the acceleration approaches its
meximum, and the ratio of the acoe].eration to the speed becomes
large.

These equations mey be epplicable to gear problems. In spur
gears, for example, the relative movement between the teeth in
contact is a combination of sliding and rolling motion. If hydro-
dynamic lubrication exists between the gear teeth, the application
of the equations for slider bearings determines the change in load
capacity, which, in turn, may be related to the important problem
of gear-teeth pitting.

Another application for these equations is found in the con-
version of conditions of uniform speed and dynamic loads to an
equlvalent set of variable velocitles and & unidirectional constant
load. A conversion of this type should be used when an analysis
of ap investigation of varying loads indicates that the experi-
mental work could be simplified by its use; however, great ocare
must be exercised in the cholce and validity of the equivalency.
A similar but reversed procedure was followed by Swift in refer-
ence 7 where it 1s shown that part of the presented analysis of
fluctuating loads in sleeve bearings can also be applied to small
cyclical variations of speed.
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SUMMARY OF RESULTS

A theoretical analysis was made of the effects of the inclu-
slon of a term expressing the rate of increase of momentum of an
elementary particle of lubricant in the direction of motion in
hydrodynamic theory as applied to lubrication. A number of convenw-
tional assumptions are discussed and applied in equations that
ostablish fundamental relations and that show the effects of temp-
oral tangential bearing acceleration on pressure distribution and
load capacity.

One importent unknown has been the qualitative contribution
to load capacity made by the acceleration of & bearing. This investi-
gation showed that acceleration causes a decrease in load capacity.
The equations indicated that the most important factor is the ratio
of acceleration to speed. When thls ratlo is high, the effect of
accelsration is large; when it 1s low, the effect is small. It
was found that during acceleration the load capacity of a bearing
is decreased by an amount that :ls dependent on jthe ratio of acceler-
atlion to speed.

In the case of Journal bearings in Jet engines now being used,
it was determined that fallure of such bearings is not induced by
changes in bearing characteristics caused by bearing acceleration.

For certain values of the crank angle in reciprocating engines,
the acceleration-speed ratio of the piston rings, which can be
considered as slider bearings, becomes so large that the decrease
in load capacity due to the temporal tangential acceleration is
almost of the same maegnitude as the steady-state load capacity. In
such instances, the lubricating film may break down and permit metal-
to-metal contact. This conditlon is not limited to piston rings,
but also exists for the general case of reciprocating bearings.

Lewis Flight Propulsion Leboratory,
Rational Advisory Committee for Aeromautics,
Cleveland, Ohio, August 30, 1948.
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Figure 2, — Slider bearing.
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Figure 3. — Full journal bearing.
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Figure 9. - Acceleration test of typical turbojet engilne.
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